Google

Avizora - Atajo Google


 

Avizora Atajo Publicaciones Noticias Biografías

Armamentismo. Energía Atómica. No Proliferación. Desarme
La verdad sobre Bombas atómicas

Ir al catálogo de monografías
y textos sobre otros temas

Glosarios - Biografías
Textos históricos

ENLACES RECOMENDADOS:

- Guerras y conflictos
- Hiroshima y Nagasaki
- Sexualidad humana

- ¿Qué es el consenso de Washington?
- Tratado de no Proliferación Nuclear: A Latina

 

Google

Avizora - Atajo Google


04
05 - La primera explosión nuclear del mundo se supone que fue en la Isla de Rugen Alemania. Desde ese preciso instante la historia de la humanidad ha pasado a una nueva era, la era nuclear.

A principios de Octubre de 1944 el periodista italiano Luigi Romersa, ya famoso por su reportaje sobre la liberación de Mussolini efectuada un año antes por tropas especiales alemanas, recibía del Duce una misión extremadamente importante: viajar a Alemania con objeto de informarle de los avances realizados en el Tercer Reich en el campo de las armas secretas. El periodista fue llevado a visitar las instalaciones subterráneas de Turingia, las rampas de lanzamiento de las todavía desconocidas V-2, y lo que seria más importante: una prueba de la bomba atómica alemana totalmente operativa.

En varios artículos escritos desde 1947 en prestigiosas revistas militares europeas, el periodista Luigi Romersa declaró ser testigo de una prueba nuclear alemana el 12 de octubre de 1944 a las 11:45 AM en la isla de Rügen, en el mar báltico y próxima a la base de Peenemunde, donde se realizaron la mayor parte de las investigaciones sobre cohetes.

La magnitud de la explosión atómica fue captada fotográficamente desde varios lugares de la costa báltica, y la onda sísmica provocada por la detonación fue detectada en la distante Estocolmo.

Dos meses después, el 16 de Diciembre de 1944 un entusiasmado Mussolini pronunciaría su ultimo discurso publico ante miles de fascistas en el teatro lírico de Milán, anunciándoles el inminente ataque germano contra las principales ciudades aliadas, un ataque definitivo con bombas y cohetes de potencia extraordinaria, bombas con capacidad de destruir ciudades enteras en un instante.

El 20 de Abril de 1945 Mussolini volvería a hablar de las bombas atómicas alemanas. Llama al periodista G.G. Cabella, antiguo amiigo y director del periódico "il popolo d´Alessandria", y le dicta el que seria después considerado como "testamento político" del Duce. Mussolini afirma con rotundidad en la entrevista que los alemanes tenían ya tres bombas terminadas, y que su uso puede suponer un vuelco de la situación.

Al menos un documento oficial desclasificado hace referencia a la prueba de Rügen: El 24 de enero de 1946, un piloto de la Flak antiaérea alemana llamado Ziesser es interrogado por el capitán Helenes T. Freiberger de la inteligencia americana. Dicho piloto hace una descripción detallada del lugar y momento del test nuclear, que coincide exactamente con el informe de Romersa.

El 16 de Julio de 1945 estalló la primera bomba atómica de USA en el campo de pruebas de Trinity, cerca de Álamo Gordo (Nuevo Méjico). Nunca hasta entonces se habían tenido los conocimientos necesarios como para saber que la masa puede convertirse en grandes cantidades de energía y cómo podía realizarse ese proceso, hasta entonces reservado tan sólo a las estrellas.

La famosa fórmula E=mc2 ha pasado ya a formar parte de la cultura popular aun sin que en realidad se llegue a saber qué implica. En ella se expresa la relación entre masa y energía, es decir, que una cantidad de masa puede convertirse en ingentes cantidades de energía, y viceversa. Por ejemplo, de un gramo de uranio, si se convirtiese totalmente en energía, se obtendrían 25 millones de Kw. Aplicado en forma de bomba nuclear basta decir que para asolar Hiroshima sólo se convirtió un gramo de masa (aunque toda la bomba como mecanismo pesara cuatro tonelada); su potencia fue de 12´5 kilotones, es decir, para igualar su potencia serían necesarias 12.500 toneladas de TNT. La materia usada en una bomba nuclear suele ser uranio 235 o plutonio 239, ya que debido a su gran densidad las hace ideales como combustibles de fisión. Cuando en un espacio se reúne la suficiente cantidad de materia (denominada masa crítica) se produce una reacción en cadena espontánea; esto es, el núcleo de los átomos del material se divide liberando energía y varios neutrones "rápidos" que provocan que otros núcleos también se dividan y liberen más energía y neutrones. Sin embargo, si la densidad no es suficiente la energía liberada hace que el material se expanda y se detenga el proceso. Para evitar que se pare la reacción se recurre a una materia muy densa de por sí (isótopos del uranio y plutonio) que además se comprime de manera muy rápida para lograr una altísima densidad que permite que los neutrones "rápidos" choquen antes con otros núcleos y se produzca antes el mayor número de divisiones.

Como la cantidad de divisiones aumenta exponencialmente (por ej.: 2, 4, 16, 256...) es casi al final del proceso cuando se libera más energía. Para una explosión de 100 kilotones son necesarias 58 generaciones, las 7 últimas generan el 99,9 % de la energía en período cortísimo de tiempo.

También puede liberarse energía con la fusión; en este proceso los núcleos se unen en vez de separarse, pero se requieren altísimas temperaturas (del orden de millones de grados) para que el mismo se lleve a cabo. Para esta reacción se usan átomos ligeros (más fáciles de unir), generalmente hidrógeno o sus isótopos (deuterio y tritio). Para unir dos átomos "basta" con hacerlos chocar. Los protones de cada átomo se repelen debido a que ambos tienen carga positiva, de modo que no llegan a acercarse lo suficiente para que se unan (gracias a la fuerza nuclear fuerte). Por eso, para que se lleve a cabo la fusión deben comprimirse fuertemente los núcleos, y una vez hecho sólo podrán continuar unidos si pierden un equivalente de la energía que les hizo apretarse. En el caso de usar deuterio y tritio se libera violentamente un neutrón. Esta energía liberada es la que forma una bomba de fusión, también denominada bomba H.

Sea cual fuere el sistema de funcionamiento de una bomba nuclear (fusión o fisión), una cantidad de masa se convierte en energía, la potencia sólo depende de la capacidad de la ingeniería para convertir más masa antes de que la reacción disperse la moléculas; en teoría la potencia es, por tanto, ilimitada.

Una bomba nuclear consiste básicamente en una esfera hueca de plutonio que no es lo suficientemente densa como para producir una reacción en cadena. En su interior se encuentra un mecanismo iniciador de neutrones, y el exterior se encuentra revestido de un material explosivo. Para iniciar la explosión se disparan los detonadores que hacen que el material explosivo estalle de la manera lo más regular posible para que envíe una onda de choque esférica hacia el plutonio. Cuando ésta impacta contra él lo comprime y reduce su volumen empujándolo hacia el centro de la esfera hasta que alcanza una densidad suficiente (supercrítica) y se dispara el iniciador de neutrones para comenzar la reacción en cadena que da lugar a la explosión nuclear.

Las bombas termonucleares, de fusión o H, necesitan de una gran temperatura para que se puedan unir los núcleos, esto se consigue en el interior de una explosión de fisión, que es el comienzo de toda bomba H.

Una vez acabada la reacción de fusión nos encontraremos con una esfera expandida con una temperatura de millones de grados en la que pululan los productos de la fusión (litio e isótopos del hidrógeno). Tal es su velocidad que pueden fundirse unos con otros dando lugar a la reacción de fusión. Esta reacción genera más energía que la anterior y libera gran cantidad de partículas nucleares, pero no es una reacción en cadena, ya que el propio calor que genera hace que las partículas se separen y se expandan en forma de una esfera de plasma con una temperatura que tan sólo experimenta el universo de manera natural en muy raras ocasiones (en forma de supernova). Pero antes de que la reacción se extinga, los neutrones generados por las detonaciones anteriores provocan de nuevo una reacción de fusión sobre una camisa de U-238, pero esta vez mucho mayor que las anteriores. La potencia de una bomba termonuclear carece de límite; una bomba como la de Hiroshima de 12,5 kilotones (un kilotón equivale a 1.000 toneladas de TNT) se considera dentro de los arsenales modernos como pequeña, siendo las de un megatón las "standard".

En la URSS llegaron a detonar una de 60 megatones. Un submarino norteamericano Trident posee el poder destructivo equivalente a 25 veces el de toda la Segunda Guerra Mundial.

Para la construcción de una bomba nuclear normalmente se usa U-235 mezclado con U-238. El primero no forma parte de la reacción nuclear sino que es el segundo el que es fisionable de manera espontánea emitiendo neutrones, que son absorbidos por el U-235 para evitar que se produzca de manera accidental la reacción en cadena. Así el U-235 hace de escudo absorbiendo los neutrones del U-238 que es el que produce la detonación nuclear. El U-235 puede ser sustituido por PU-239, que no se halla de manera natural en cantidad apreciable, de modo que se obtiene de los reactores nucleares a partir del U-238.

La desintegración del uranio en la reacción en cadena se produce de manera espontánea para una masa de 50 Kg si éste elemento es puro. El plutonio no es capaz por si solo de comenzar una rápida reacción en cadena de modo que se mezcla de berilo y polonio, dando como resultado un producto que, aunque no es fisionable por si solo, una pequeña cantidad actúa como catalizador para las grandes reacciones. Así bastan 16 Kg. De PU-239 para obtener la masa supercrítica, y 10 Kg. si se mezcla con U-238.

El U-238 es muy difícil de extraer por encontrarse en la naturaleza muy mezclado con otros compuestos. Así, por cada 25.000 toneladas de mineral de uranio bruto sólo se obtienen 50 toneladas de uranio, del que el 99´3% es U-238 y el resto el rarísimo isótopo U-235; ambos sólo se pueden separar de manera mecánica gracias a la levísima diferencia de peso entre ambos. Así, el uranio se mezcla en forma gaseosa con fluor (hexafluorídrico) que es impulsado a baja presión haciéndolo pasar por unas cámaras, que aumentan la concentración de uranio sensiblemente tras cientos de pasadas. Para una central nuclear la pureza ha de ser del 2% y para una bomba (teóricamente) el 95%.

Para separar el isótopo se recurre a la centrifugación del gas, siendo el más pesado U-238 despedido hacia el exterior con más fuerza. Para obtener otra vez el uranio separado del gas se recurre a la separación magnética.

Los mecanismos que suelen componer una bomba nuclear son:

ALTÍMETRO: No suele usarse el barométrico por verse afectado por las condiciones atmosféricas, tampoco los de continua frecuencia modulada (FM CW) por su complejidad excesiva. Por tanto se suelen usar los que simplemente emiten un pulso intermitente que, rebotando en el suelo y volviendo a la bomba y según el tiempo transcurrido en el recorrido, puede saberse la altura sin necesidad de complicar más el sistema para dar una precisión que en realidad no es importante (2 o 3 m. de diferencia no son apreciables más que en mini bombas bastante menores que las de Hiroshima), siendo la altura normal de detonación la de 2.000 m.

En la práctica, la bomba emite un pulso de 4200 Mhz, y al poco emite otra onda de alta frecuencia (la diferencia de tiempo depende de la altura), ambas frecuencias son recibidas y mezcladas electrónicamente para obtener la diferencia de ambas, que es proporcional a la altura. Los pulsos suelen emitirse 120 veces por segundo y alcanzan un rango de 3.000 m. sobre la tierra y 6.000 m. sobre el mar (la reflexión es allí mejor) siendo su error de hasta 1´5 m.

CABEZA DETONADORA: Como ya se dijo, está compuesta de una carga explosiva muy bien calibrada que, a la orden del altímetro, detona produciendo una onda de choque uniforme sobre el elemento radioactivo comprimiéndolo hasta alcanzar la masa supercrítica.

Compañías privadas producen camisas explosivas que, modificadas, pueden ser usadas para la fabricación del objeto que nos ocupa. La cantidad de presión necesaria a aplicar es un secreto por razones de seguridad, aunque se sabe que los explosivos plásticos son ideales sobre todo por su maleabilidad y facilidad de manejo.

El detonador varía si es combustible es uranio o plutonio:

DETONADOR DE URANIO: La masa total se divide en dos partes, una mayor de forma semiesférica y cóncava que se acopla perfectamente con la otra más pequeña. Como es de suponer, ambas se encuentran separadas hasta el momento de la detonación, en el que una explosión convencional dispara la parte pequeña que impacta contra la mayor para lograr en un instante la masa supercrítica.

DETONADOR DE PLUTONIO: Necesita una precisión de ingeniería mucho mayor que la anterior, ya que está compuesta de 32 secciones de plutonio-berilio-polonio, todas de igual forma y posición distribuidas concéntricamente. El aspecto final es parecido al de un balón de fútbol. Todas han de cerrarse simétricamente en una diezmillonésima de segundo para conseguir la detonación.

DEFLECTOR DE NEUTRONES: Suele ser U-238. Su función es la que ya se explicó: evitar una reacción accidental, además refleja las partículas de vuelta cuando se alcanza la masa supercrítica.

ESCUDO PROTECTOR: Recibe otros nombres, pero su función es siempre la de proteger de la radiación natural tanto al personal que la maneja como a los circuitos de la bomba que pueden sufrir cortocircuitos o puestas en funcionamiento accidentales.

SISTEMA DE ARMADO: Es otro sistema más de seguridad, consistente en quitar una parte imprescindible de la bomba para evitar detonaciones accidentales, de modo que sólo cuando está próximo su lanzamiento se inserta esta parte. Una analogía sería como si al aparcar nuestro coche le quitáramos el volante o una bujía, así estaríamos seguros de que no nos lo roban porque sin estas partes el coche no funciona.

Información alternativa

 


 

AVIZORA.COM
Webmaster: webmaster@avizora.com
Copyright © 2001 m.
Avizora.com